
Attack Pattern Usage 1
ID: 588-BSI | Version: 18 | Date: 11/24/08 10:11:36 AM

Attack Pattern Usage
Sean Barnum, Cigital, Inc. [vita3]

Amit Sethi, Cigital, Inc. [vita4]

Copyright © 2006 Cigital, Inc.

2006-11-07 L3 / L, M5

This article is the third in a coherent series introducing the concept, generation, and usage of attack
patterns as a valuable knowledge tool in the design, development, and deployment of secure software. It is
recommended that the reader review the preceding articles to fully understand the context of the material
presented.

Unlike many other concepts and tools with a narrowly focused area of impact, attack patterns provide
potential value during all phases of software development regardless of the SDLC chosen, including
requirements, architecture, design, coding, testing, and even deploying the system. However, because attack
patterns describe how an attacker may break software, some readers may not immediately understand how
attack patterns can be used to actually build secure software. Once the reader grasps the importance of
understanding the attacker’s perspective to software security, the value of attack patterns becomes intuitively
clear. Without knowing how software may be attacked, it is difficult to know how to defend against the
attacks.

The sections below describe how attack patterns can be leveraged during each stage of the SDLC. To make
the information more concrete, each section provides an example. All examples will use as their basis one
application that needs to be developed. The application will be web based and designed to let consumers
purchase books online.

Requirement Gathering
This article assumes that the reader is familiar with the basic activities and results of typical software
requirements definition efforts. Many other resources explain the various methodologies and challenges
for requirements gathering. The Build Security In site offers a good Requirements Engineering Annotated

Bibliography7. Discussion here will focus on the role attack patterns play in defining more appropriate and
comprehensive requirements regarding the security of the software under development.

Functional Requirements
Most requirements gathering starts with relatively high-level functional requirements such as “users shall
be able to access the site using at least the latest versions of Internet Explorer and Mozilla Firefox” and
“users shall be able to purchase books in any currency”. These high-level requirements generally lead to
more detailed functional requirements and can potentially drive out security requirements. These security
requirements can be functional, whether visible to the end user or not, or not functional in nature, but equally
important. Very often, detailed functional and non-functional requirements including security requirements
are overlooked and neglected because the general focus is basic functionality.

Deriving Security Requirements From Functional Requirements
The above two requirements should lead to questions that could help identify security requirements. If a
user attempts to view the website with anything but the latest versions of Internet Explorer and Mozilla
Firefox, what should happen? Is it acceptable if the browser crashes? Is it acceptable if absolutely nothing
is displayed? Is there anything that the server needs to do to differentiate between browsers? What should

3. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/35-BSI.html (Barnum, Sean)
4. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/601-BSI.html (Sethi, Amit)
7. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/231-BSI.html (Requirements Engineering Annotated

Bibliography)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/35-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/601-BSI.html
http://buildsecurityin.us-cert.gov/bsi/1084-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/231-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/231-BSI.html

Attack Pattern Usage 2
ID: 588-BSI | Version: 18 | Date: 11/24/08 10:11:36 AM

happen if the self-identification data sent by the client is spoofed (e.g., if Mozilla Firefox is set to report itself
as being Internet Explorer)? Also, if users can purchase books in other currencies, then should they be able
to browse the website in other languages or encoding schemes (e.g., Unicode)? If so, how many languages
and encoding schemes should the website support? What should happen if a client sends characters from a
language or encoding scheme that the server does not accept?

As shown above, the process of making functional requirements more specific often is also an effective
mechanism for identifying security requirements. For instance, indicating that “if a client sends characters
from a language that the server does not recognize, then the server will return a HTTP 415 status code” is a
good security requirement. This informs the developers how to handle the issue. Otherwise, the problem may
be overlooked, causing issues such as attackers being able to bypass input filters.

Positive and Negative Security Requirements: The Role of Attack Patterns
Security-focused requirements are typically further split between positive requirements, which specify
functional behaviors the software must exhibit (often security features), and negative requirements (typically
in the form of misuse/abuse cases), which describe behaviors that the software must not exhibit to be

operating securely [McGraw 068].

Attack patterns can be an invaluable resource for helping to identify both positive and negative security
requirements. They have obvious direct benefit in defining the software’s expected reaction to the attacks
they describe. When put into the context of the other functional requirements for the software and when
considering the underlying weaknesses targeted by the attack, they can help identify both negative
requirements describing potential undesired behaviors and positive functional requirements for avoiding,
or at least mitigating, the potential attack. For instance, if a customer provides the requirement “the
application must accept ASCII characters,” then the attack pattern “Unicode Encoding” can be used to ask
the question “What should the application do if Unicode characters or another unacceptable character set
is encountered?” From this question, misuse/abuse cases can be defined such as “Malicious user provides
Unicode characters to the data entry field.” By having a specific definition for this negative requirement, the
designers, implementers, and testers will have a clear idea of the type of hostile environment with which the
software must deal and will build the software accordingly. This information can also help define positive
requirements such as “The system shall filter all input for Unicode characters.” If these sorts of requirements
are overlooked, the developed application may have instances in which it may unknowingly accept Unicode
characters, and an attacker could use that fact to bypass input filters for ASCII characters.

Many vulnerabilities result from vague specifications and requirements. This includes ambiguities outside
the immediate scope of the application, including "unspecified behavior" in certain specifications (e.g., C
language and how compilers must deal with certain situations) or RFCs (e.g., IP fragmentation and how
end nodes interpret the specification in varying fashions). Requirements should specifically address these
ambiguities to avoid opening up multiple security holes. In general, attack patterns allow the requirements
gatherer to ask “what if” questions to make the requirements more specific. If an attack pattern states
“Condition X can be leveraged by an attacker to cause Y,” then a valid question may be “What should the
application do if it encounters condition X?”

Varying Levels of Attack Pattern Detail and Specificity
Attack patterns can exist at varying levels of detail and specificity; they often may start out more abstract
with less known instances of exploit and then mature in level of detail over time as more exploit instances
are discovered. These differing levels of detail also can influence the requirements they identify at different
levels. More abstract attack patterns typically lead to less specific nonfunctional requirements, while more
detailed attack patterns typically lead to more specific functional requirements.

8. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/587-BSI.html#dsy587-BSI_mcgraw06 (Attack Pattern
References)

http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/587-BSI.html#dsy587-BSI_mcgraw06

Attack Pattern Usage 3
ID: 588-BSI | Version: 18 | Date: 11/24/08 10:11:36 AM

Architecture and Design
Once requirements have been defined, all software must go through some level of architecture and design.
Regardless of the formality of the process followed, the results of this activity will form the foundation
for the software and drive all remaining development activities. During architecture and design, decisions
must be made about how the software will be structured, how the various components will integrate and
interact, which technologies will be leveraged, and how the requirements defining how the software will
function will be interpreted. Careful consideration is necessary during this activity, as up to 50% of software

defects leading to security problems are design flaws [McGraw 069]. In the example in Figure 1, a potential
architecture could consist of a three-tier system with the client (a web browser leveraging Javascript/

HTML)), a web server (leveraging JavaTM Servlets), and a database server (leveraging Oracle 10i). Decisions
made at this level can have a significant impact on the overall security profile of the software.

Figure 1. Example architecture

Attack patterns can be valuable during architecture and design in two ways. First, some attack patterns
describe attacks that directly exploit architecture and design flaws in software. For instance, the “Make

the Client Invisible” attack pattern described in the Introduction to 10Attack Patterns11 article exploits
client-side trust issues that are apparent in the software architecture. Second, attack patterns at all levels
can provide a useful context for the threats that the software is likely to face and thereby determine which
architectural and design features to avoid or to specifically incorporate. The Make the Client Invisible attack
pattern tells us that absolutely nothing sent back by the client can be trusted, regardless of what network
security mechanisms (e.g., SSL) are used. The client is untrusted, and an attacker can send back literally any

9. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/587-BSI.html#dsy587-BSI_mcgraw06 (Attack Pattern
References)

10. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/585-BSI.html (Introduction to Attack Patterns)
11. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/585-BSI.html (Introduction to Attack Patterns)

http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/587-BSI.html#dsy587-BSI_mcgraw06
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/585-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/585-BSI.html

Attack Pattern Usage 4
ID: 588-BSI | Version: 18 | Date: 11/24/08 10:11:36 AM

information that he/she desires. All input validation, authorization checks, etc. must be performed on the
server side. In addition, any data sent to the client should be considered visible by the client regardless of its
intended presentation (i.e., data that the client should not see should never be sent to the client). Performing
authorization checks on the client side to determine what data to display is unacceptable.

The Make the Client Invisible attack pattern instructs the architects and designers to ensure that absolutely
no business logic is performed on the client side. In fact, depending on the system requirements, and the
threats and risks the system faces, the architects and designers may even want to define an input validator
through which all input to the server must pass before being sent to the other classes. Such decisions must be
made at the architecture and design phase, and attack patterns provide some guidance regarding what issues
should be considered.

It is essential to document any attack patterns used in the architecture/design phase so that the application
can be tested using those attack patterns. Tests must be created in the later testing phase to validate that
mitigations for the attack patterns considered during this phase were implemented properly.

Implementation and Coding
If architecture and design have been performed properly, each developer implementing the design should be
writing well-defined components with well-defined interfaces.

Attack patterns can be useful during implementation because they identify the specific weaknesses targeted
by relevant attacks and allow the developer to ensure that these weaknesses do not occur in their code. These
weaknesses could take the form of implementation bugs or simply valid coding constructs that bear with
them security implications. Implementation bugs are not always easy to avoid or to catch and fix. Even
after applying basic review techniques, they can still remain abundant and can make software vulnerable to
extremely dangerous exploits. It is important to extend basic review techniques with more focused security
relevant concerns. Failure to properly check an array bound, for example, can lead to an attacker being
able to execute arbitrary code on the target host. Failure to perform proper input validation can lead to an
attacker being able to destroy an entire database. Underlying security issues in non-buggy valid code are
typically more difficult to identify. They cannot be tested for with a functional behavioral model the way
bugs can. They require specialized knowledge of what these weaknesses look like. These articles focus
on how attack patterns can be used to identify specific weaknesses for targeting and mitigation through
informing the developer ahead of time of the issues to avoid and through providing a list of issues (Security

Coding Rules13) to look for in code reviews, often performed with security scanning tools.

Prevention requires that the developers understand applicable attack patterns and ensure that their code does
not allow the attack patterns to succeed. The first step is to determine which attack patterns are applicable
for the application being developed. Only a subset of attack patterns will be applicable for a particular
piece of software, depending on its architecture, environment, and the technologies used to implement
it. For instance, buffer overflow vulnerabilities are not typically applicable if all coding is done in Java.
Input validation vulnerabilities may be less of a concern if all untrusted input is passed through a vetted,
central, server-side filter before it is delivered to their code, rather than relying on all entry points (often
implemented by different individuals) to perform their own validation. It is important to determine the attack
patterns that will be applicable for a particular project. In some instances, different attack patterns may be
applicable for different components of a product.

Once the applicable attack patterns are determined, they can be used to guide developers as to what not
to allow in their code. In our example, a developer could leverage an attack pattern such as “simple script
injection” and avoid XSS vulnerabilities. One relatively easy way to do this is to identify all places from
which output is being sent to the user from an untrusted source and convert potentially dangerous characters
into their HTML equivalents. For instance, convert ”<” to ”<”, ”>” to ”>”, etc. Third-party libraries
for Java can perform such conversions automatically. JavaScript’s escape() function performs a similar
task. This will prevent untrusted input containing potentially malicious data from being displayed to the

13. http://buildsecurityin.us-cert.gov/bsi/76-BSI.html (Coding Rules)

http://buildsecurityin.us-cert.gov/bsi/76-BSI.html
http://buildsecurityin.us-cert.gov/bsi/76-BSI.html

Attack Pattern Usage 5
ID: 588-BSI | Version: 18 | Date: 11/24/08 10:11:36 AM

user. Malicious data could include artifacts such as <script> tags inserted by an attacker. This conversion
should be carefully managed to avoid potential unintended buffer overflow issues. Of course, this problem
could also be handled in other ways, such as use of a white list or at an architectural level by defining an
input validator and an output sanitizer. The architectural approach would be more suitable for large projects,
whereas dealing with the problem at the implementation level may be acceptable for smaller projects.

Good architecture/design as well as developer awareness, enhanced with attack patterns, can potentially
help to minimize many security weaknesses. However, it is also essential to ensure that all source code,
once written, is reviewed to validate the absence of targeted weaknesses. Due to the size and monotony of

this task, it is typically performed using an automated analysis tool14 (e.g., those from Fortify, Klocwork,
Coverity). Even though analysis tools cannot find all security weaknesses, they can help weed out many

potential issues. Using attack patterns as guidance, specific subsets of the tools’ search rules15 can be targeted
and custom rules can be created for organizations to help find security weaknesses or instances of failure
to follow security standards. For example, revisiting the potential “Simple Script Injection” attack pattern,
an organization may have a security standard in which all untrusted input is passed through an input filter,
and all output of data obtained from an untrusted source is passed through an encoder. An organization can
develop such filters and encoders, and static source code analysis tools can help find occurrences in code
where developers may have neglected to adhere to standards and opted to use Java’s input/output features
directly.

Software Testing and Quality Assurance

Testing and quality assurance16 is a critical phase in the software development lifecycle. Software must
undergo several levels and types of testing before it is released into a production environment. Different
levels of testing include unit testing, integration testing, system testing, regression testing, and deployment
testing. Different types of testing include functional testing, security testing (including penetration testing),
performance testing, data integrity testing, and stress testing. A detailed discussion about all of the various
levels and types of testing is out of scope for this paper. However, it is important to note that attack patterns
can be leveraged during many different levels and types of testing to help design test cases.

The testing phase is different than the previous ones in the SDLC in that its goal is not necessarily
constructive; the goal of risk-based security testing is typically to attempt to break software so that the

discovered issues can be fixed before an attacker can find them [Whittaker 0317]. The purpose of using attack
patterns in this phase is to have the individuals performing the various levels and types of testing act as
attackers attempting to break the software.

Leveraging Attack Patterns in Unit Testing
Unit testing involves testing the components or pieces of software independently to ensure that they meet
their functional and non-functional specifications. Applicable attack patterns should be used to identify
relevant targeted weaknesses and to generate test cases for each component to ensure that they avoid or resist
these weaknesses. For example, to test for shell command injection using command delimiters, malicious
input strings containing delimiter separated shell commands should be crafted and input to the applicable
component(s) to ensure proper behavior when provided with this type of malicious data.

Leveraging Attack Patterns in Integration Testing
Integration testing involves ensuring that software components integrate and interact together properly. This
requires not only ensuring that all components compile together and that their interfaces match but also that
the actual functionality of the components does not conflict If a good architecture and design are created and

14. http://buildsecurityin.us-cert.gov/bsi/articles/tools/code.html (Source Code Analysis)
15. http://buildsecurityin.us-cert.gov/bsi/33-BSI.html (Coding Rules Overview)
16. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/testing.html (Security Testing)
17. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/587-BSI.html#dsy587-BSI_whittaker03 (Attack Pattern

References)

http://buildsecurityin.us-cert.gov/bsi/articles/tools/code.html
http://buildsecurityin.us-cert.gov/bsi/33-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/testing.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/587-BSI.html#dsy587-BSI_whittaker03

Attack Pattern Usage 6
ID: 588-BSI | Version: 18 | Date: 11/24/08 10:11:36 AM

proper unit testing is performed, integration testing should reveal less major issues than otherwise. A primary
security issue to consider during integration testing is whether the individual components make differing
assumptions based on security such that the integrated whole may contain conflicts or ambiguities. Attack
patterns can be leveraged to create some test cases for integration testing. At a minimum, the attack patterns
documented in the architecture/design phase should be used to create integration tests. Other attack patterns
may be applicable as well. For instance, the Make the Client Invisible attack pattern can be used to create test
cases that simulate an attacker bypassing the client and communicating directly with the server or an attacker
modifying the client to send malicious data to the server.

Leveraging Attack Patterns in System Testing
System testing is used to test the entire system to ensure that it meets all of its functional and non-functional
requirements. Hopefully, attack patterns were used in the requirement gathering phase to generate security
requirements. These security requirements should be tested during system testing. For example, the Unicode
Encoding attack pattern can be used to generate test cases that ensure that the application behaves properly
when provided with unexpected characters. Testers should provide characters that the application is not
supposed to accept to the application to see how it behaves. The application’s actual behavior when under
attack should be compared with the desired behavior defined in the security requirements.

Leveraging Attack Patterns in Regression Testing
Regression testing is the running of existing tests on the software any time that the code is changed to
ensure that the change not only caused the intended behavior but also that it did not inadvertently cause
any unintended changes. Attack patterns do not bring any new and unique value to regression testing itself.
Effective regression testing should include security test cases developed during the other testing levels that
were guided by use of attack patterns.

Leveraging Attack Patterns for Testing in the Operational Environment
Even after application of typical testing levels, software brings with it security concerns applicable to testing.
Even if security was considered throughout the SDLC when building software, and even if extensive testing
has been performed, vulnerabilities will likely still exist in the software. This is because no useful piece

of software is 100 percent secure [Viega 0118]. For software to be useful, there must be ways to use it.
Revisiting the analogy of a bank vault, a vault could be made extremely secure if it were constructed a few
miles underground, was surrounded by several hundred feet of steel-reinforced concrete, had no access
doors, and could withstand attacks from nuclear bombs. It might even be 100 percent secure, but it would
of course be completely useless. For it to be useful, there must be a way to access it, and an attacker is
likely to exploit the access point(s) if the access point(s) are the easiest ways of gaining access. Designers
and builders can only ensure that they disallow “side-channel” attacks, so that the only way the attacker
can access the vault is through the door built into it. The designers can do absolutely nothing to prevent
an authorized employee from giving away the combination to the vault to their friends, from leaving the
door ajar, etc. The vault itself can be made extremely secure, but the actual operational environment may
be completely insecure. Software also faces similar issues. Software can be designed and developed to
be extremely secure, but if it is deployed and operated in an insecure fashion many vulnerabilities can be
introduced. For example, a piece of software could provide strong encryption and proper authentication
before allowing access to encrypted data, but if an attacker can obtain valid authentication credentials he/she
can subvert the software’s security. Nothing is 100 percent secure, and the environment must be secured and
monitored to thwart attacks.

Newer object-oriented programming models involving principles such as inversion of control further
complicate the problem. For instance, the Spring framework for Java allows components to be “wired”
together declaratively, similar to components being assembled together in a car. The entire car does not need
to be rebuilt if a manufacturer decides to use a different brand of tires; the Spring framework enables similar

18. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/587-BSI.html#dsy587-BSI_viega01 (Attack Pattern References)

http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/587-BSI.html#dsy587-BSI_viega01

Attack Pattern Usage 7
ID: 588-BSI | Version: 18 | Date: 11/24/08 10:11:36 AM

swapping of software components during deployment without requiring rebuilding of large pieces. However,
the problem is that the system designers and developers may have made assumptions regarding certain
components that may not be satisfied by the components that are actually deployed. Such issues cannot be
considered the manufacturer’s fault unless they provide insufficient documentation.

Therefore, it is extremely important to perform security testing of the software in its actual operational
environment. Vulnerabilities present in software can sometimes be masked by environmental protections
such as network firewalls and application firewalls, and environmental conditions can sometimes create
new vulnerabilities. Such issues can often be discovered using a mix of white-box and black-box analysis
of the deployed environment. White-box analysis of deployed software involves performing security
analysis of the software, including its deployed environment, with knowledge of the architecture, design,
and implementation of the software. Black-box analysis (typically in the form of penetration testing)
involves treating the deployed software as a “black box,” and attempting to attack it without any knowledge
of its inner workings. While black-box analysis is relatively inexpensive and can find many of the more
obvious and small problems, it is not as effective at finding many of the often more significant issues. These
issues are typically found only through in-depth white-box analysis. Black-box is good for finding the
specific implementation issues you know to look for, while detailed and structured white-box can uncover
unexpected architecture/design and implementation issues that you may not have known to look for. Both
types of testing are important, and attack patterns can be leveraged for both.

Leveraging Attack Patterns for Black-Box Testing

Black-box testing19 of web applications is generally performed using tools such as application security

testers like those from companies such as SPI Dynamics20 that automatically run predefined tests. Attack
patterns can be used as models to create the tests these tools perform, thereby giving them more significant
relevance and effectiveness. Such tools, though, cannot find many types of architectural flaws, or even all
implementation errors. These tools generally test for a large variety of attacks, but they generally cannot
find subtle architectural vulnerabilities. They effectively find issues that script kiddies and other relatively
unskilled attackers would likely exploit. However, a skilled attacker would be able to find many issues that a
vulnerability scanning tool simply could not detect. For instance, a lack of encryption for transmitting social
security numbers would not be detected using an automated tool, as the fact that social security numbers are
unencrypted is not a purely technical flaw. The black-box testing tool cannot determine what information is
a social security number and cannot apply business logic. Attack patterns that are useful for creating black-
box tests include those that can be executed remotely without requiring many steps. Some examples of
vulnerabilities that black-box testing can detect include cross-site scripting using injection of JavaScript in a
HTTP parameter and SQL injection using separator characters. Automated tools can be used to create tests,
such as where a separator character is inserted into a HTML form field, to observe whether a database error
occurs. Black-box testing of non-web applications can be performed similarly using different tools.

Leveraging Attack Patterns for White-Box Testing

White-box testing21 is slower but more thorough than black-box. It involves extensive analysis performed
by security experts that have access to the software’s requirements, architecture, design, and code. The
primary goal of white-box security testing is to find the more obscure implementation bugs not found in
black-box testing as well as architecture and design flaws and related security issues. The advantage of
white-box testing lies in its thoroughness; security experts may analyze a system for several weeks or months
while knowing all of its internal details. If the flaws they find are mitigated, it is unlikely that an attacker
with limited knowledge of an application’s internal workings will easily find a significant vulnerability.
Attack patterns can be leveraged to determine areas of system risk and thereby on which areas of the system
white-box analysis should focus. The attack patterns most effective for white-box analysis include those that
target architecture and design weaknesses. Attack patterns that target specific implementation weaknesses

19. http://buildsecurityin.us-cert.gov/bsi/articles/tools/black-box.html (Black Box Testing)
20. http://www.spidynamics.com/
21. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/white-box.html (White Box Testing)

http://buildsecurityin.us-cert.gov/bsi/articles/tools/black-box.html
http://www.spidynamics.com/
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/white-box.html

Attack Pattern Usage 8
ID: 588-BSI | Version: 18 | Date: 11/24/08 10:11:36 AM

should not be completely disregarded because, in many cases, implementation weaknesses can only be easily
found using manual code reviews (a type of white-box analysis). An attack pattern that could be leveraged
in white-box testing of a deployed system is sniffing sensitive data on an insecure channel. Those with
knowledge of data sensitivity classifications and an understanding of the business context around various
types of data can determine if some information that should always be communicated over an encrypted
channel is actually sent over an insecure channel. Such issues are often specific to a deployed environment;
thus, analysis of the actual deployed software is required.

Leveraging Attack Patterns in the Broader Spectrum of Testing
The testing phase of the SDLC is vital to ensuring the security of the software under development, and, as
outlined here, attack patterns can play a valuable and broad role across the various testing activities. There
are other more specific types of testing where attack patterns could be leveraged explicitly or implicitly to
test the security of the system, but that level of detail exceeds the scope of this paper. Providing such detail is
an excellent opportunity for further research and contribution.

Systems Operation
System operation and attack patterns are related in two ways. First, attack patterns can guide design of secure
operational configurations and procedures. Second, operational knowledge of security issues observed in the
fielded system can be used to feed back into the attack pattern generation process.

In many cases, software with known vulnerabilities may be deployed because it may be too expensive to
fix the problems, no other alternatives may be available, or it may be less expensive to design operational
configurations and procedures to react to attacks instead of actually mitigating the issues in the software
itself. Having proper operational configurations and procedures in place also is essential, even if software is

highly secure. As described in the Leveraging Attack Patterns for Testing in the Operational Environment23

section above, environmental conditions can dictate whether certain vulnerabilities are present in deployed
software, and a large part of environmental conditions consist of operational configurations and procedures.
Hence, proper operational configurations and procedures are essential to creating a secure environment

[Graff 0324].

Attack patterns describe how an attacker may actually exploit software. Given an attack pattern, there may
be ways in which certain operational procedures or environmental configurations can thwart the type of
attack. For instance, procedures could be put in place to deal with the decompression bomb attack described

in the Attack Pattern Generation25 article until a vendor patch becomes available. Such procedures may
include manually deleting or quarantining suspicious e-mails or temporarily blocking all external e-mail
access to an organization.

Operations people, with their knowledge of security issues and familiarity with the methods of attackers in
an operational environment, can also be a great source for generating new attack patterns. When indications
that a system was successfully exploited are present, an investigation that identifies how the attack was

carried out is generally conducted. The process described in the Attack Pattern Generation26 article can be
used during the investigation to potentially generate new attack patterns. These new attack patterns can
then be leveraged to modify existing software and/or environmental configurations or to create additional
operational procedures for added security.

Policy and Standard Generation
While, as described in the above sections, attack patterns can certainly be used directly by designers and
developers, it is also helpful in many organizations to use attack patterns indirectly during the SDLC by

23. #dsy588-BSI_leveraging
24. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/587-BSI.html#dsy587-BSI_graff03 (Attack Pattern References)
25. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/586-BSI.html (Attack Pattern Generation)
26. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/586-BSI.html (Attack Pattern Generation)

#dsy588-BSI_leveraging
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/587-BSI.html#dsy587-BSI_graff03
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/586-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/586-BSI.html

Attack Pattern Usage 9
ID: 588-BSI | Version: 18 | Date: 11/24/08 10:11:36 AM

using them to generate policies and standards that are in turn used to develop secure software. These policies
and standards can include those generated by third parties, such as with the Payment Card Industry (PCI)
standards or those generated for internal use within an organization. Using attack patterns to generate
policies is mostly helpful for organizations that need to dictate security standards for other organizations
(e.g., credit card consortia, government agencies) and for large software development organizations.

Using policies and standards during the SDLC is not a substitute for the knowledge of attack patterns, and
organizations should not rely solely on their software development staff using policies to develop secure
software for several reasons. First, it is much easier to concisely describe how software can be abused than
to describe how secure software should be built. Mitigations for attack patterns also vary by the technology
used. Second, waiting until policies and standards are updated using information from the latest attack
patterns adds another layer of indirection that increases the amount of time it takes for software developers to
implement countermeasures against the latest attack patterns.

Even though appropriate policies and standards are not substitutes for attack patterns, they are extremely
helpful for day-to-day software design and development activities. Policies describe high-level rules that
are applicable across all software deployed in an organization. For instance, a policy may state “all data
obtained from a network must be sanitized before they are processed by any business logic.” This policy may
be designed to address attack patterns such as “command delimiters” and “XSS in HTTP headers.”

Standards are refinements, often seeded with useful examles, of policies that apply to specific software and/
or technologies. For example, addressing the attack pattern of “XSS in HTTP headers” in Java Servlets
may require use of standards such as “all data obtained from the network that contain characters must have
the following characters removed as soon they are seen by a server: ‘<’, ‘>’, ‘(‘, ‘)’, ‘;’ ”. However, it is
important to note that standards should always be developed and deployed in a balanced and comprehensive
fashion and not in isolation. For instance, the example in the previous sentence applied in isolation could
leave a system susceptible to alternate encoding issues and thus should be coordinated and buttressed with
other relevant standards as an effective package.

Policies and standards are useful in large organizations because they ensure that mitigations for attack
patterns are applied uniformly across all code. Like attack patterns, policies and standards can be used in all
phases of the SDLC. Policies and standards also help organizations specify minimal security controls that
must be in place for other organizations that handle certain types of data.

Further Reading

The remaining support articles provide a detailed glossary28 of terms used in this series, a detailed

references29 listing, and recommendations for further exploration30 of the attack pattern concept.

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

28. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/590-BSI.html (Attack Pattern Glossary)
29. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/587-BSI.html (Attack Pattern References)
30. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/589-BSI.html (Further Information on Attack Patterns)
1. mailto:copyright@cigital.com

http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/590-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/587-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/589-BSI.html
mailto:copyright@cigital.com

Attack Pattern Usage 10
ID: 588-BSI | Version: 18 | Date: 11/24/08 10:11:36 AM

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

